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Thermolysis of B-Siloxyalkylboranes: Formation of Alkenes and/or Silyl Enol Ethers
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erythro-Trimethylsilyl ether 3a underwent stereospecific and
quantitative syn-elimination of trimethylsiloxy(dimesityl)borane
upon heating to give (Z)-B-methylstyrene like the corresponding
hydroxy borane 1, whereas the thermolysis of #-butyldimethyl-
silyl ether 3 ¢ afforded mainly (Z)-silyl enol ether 6 by elimination
of dimesitylborane. Triethylsilyl ether 3b gave a mixture of both
products. These results indicate that two elimination reactions via
a four-centered transition state proceed competitively depending
on the steric bulkiness of the silyl group.

In the course of our study on oxetanes! bearing a highly co-
ordinate main group element at the neighboring position we
recently achieved the synthesis of a tetracoordinate 1,2-oxa-
boretanide, an intermediate of boron-Wittig reaction under basic
conditions2  We also disclosed that on heating B-hydroxy
boranes undergo syn-elimination of a hydoxyborane to give
stereospecifically the corresponding olefins under neutral condi-
tions.3 We now wish to report the thermolysis of B-siloxy
boranes, which is controlled by the bulkiness of the silyl group.

According to the method reported for the preparation of
erythro-trimethylsilyl ether 3a,%4 triethylsilyl and rbutyldi-
methylsilyl ethers (3b and 3¢) were obtained in 42 and 61%
yields, respectively,5 by sequential treatment of erythro-Mes,B-
CHMeCPhHOH (erythro-1), with R5SiCl (2) (b: R=Et; ¢: Ry =
BuMe,) in the presence of imidazole in N,N-dimethylform-
amide and then with water.

In the 'H NMR spectrum of 3 the signals assigned to 0-CHj
of two mesityl groups were broad, presumably because of the
hindered rotation of the mesityl group. The degree of broadening
increases in the order of 3e¢>3b>3a with an increase in the
bulkiness of the silyl groups.

HsC  Ph
Mes;B  Ph Mes;B - ~OSiMeg H H
Hug— — — (2-4
HsC  OSiMes A\ +
HC o Ph Mes,BOSIM
erythro-3a A €S2 iMes
5a

Trimethylsilyl ether 3a was heated around 100 °C in C¢Dy to
give (Z)-B-methylstyrene (4) and trimethylsiloxy(dimesityl)-
borane (5a) quantitatively. Monitoring of the olefin formation by
IH NMR showed that the reaction was the first order in 3a.
Temperature-dependence of the rate constants for 1 and 3a led to
the estimation of the activation parameters (AH¢ = 21.5+0.4 kcal
mol’!, AS*=-14.1£1.0 e.u. for 16 AH” = 24.6£0.4 kcal mol !,
AST=-16.3%1.1 e.u. for 3a), indicating that the reactions of both
1 and 3a proceed via a similar reaction mechanism involving a
four-centered rigid transition state (for the reaction of 3a, see A)
judging from similar activation parameters with negative activation

entropies. Although non-stereoselective elimination of trimethyl-
siloxyborane under neutral conditions* and anfi-elimination under
acidic conditions’ were reported, the present reaction is the first
example for stereospecific syn-elimination of a siloxyborane. The
fact that the reaction was retarded by an introduction of the silyl
group prompted us to investigate on the steric effect of silyl
groups.

Thermolysis of 3¢ having the bulkiest silyl group among 3a-c
gave mainly (Z)-silyl enol ether 6¢> along with only a small
amount of 4, while that of 3b afforded a mixture of 4 and 6b, as
shown in Table 1. The stereochemistry of 6b,c was determined
to be (Z)-configuration by different NOE experiments.
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Table 1. Thermolysis of B-Siloxyalkylboranes 3a-¢

compounds solvents temp/°C time/h  products (yields®/%)
3a CsDg 130 2 (2)-4 (100)
3b CsDg 145 24 (2)-4 (32) (Z)-6b (68)
toluene-dg 180 9 (2)-4Y (17) (2)-6b (83)
3¢ toluene-dg 170  12.5  (2)-4 (<5) (Z)-6 ¢ (>95)

2 Determined by ' NMR spectroscopy. b The ratio of (2)(E) was 88/12.
A separate experiment showed that thermal isomerization between (Z)- and
(E)4 took place under the reaction conditions.

The results indicate that syn-elimination of dimesitylborane (7)
giving silyl enol ethers 6b,c via a four-membered transition state
can compete with syn-elimination of siloxydimesitylborane (5)
when 3b,c having a silyl group larger than trimethylsilyl were
used.

Since it is reasonably considered that 3b and 3¢ in solution
also have conformation B like erythro-3a in the crystalline state,?
elimination of 7 most likely occurs via a transition state D reached
from an eclipsed conformer C which is in turn formed by rotation
of the C-C bond of the most stable conformer B.

It is obvious that there exists some interaction between oxygen
and boron atoms in the transition state giving 4. Since such a
transition state becomes unfavorable with increasing the bulkiness
of the silyl group, the elimination® proceeds via another transition
state D in the reactions of 3b and 3¢ to afford (Z)-6, with the
ratio of 4/6 being reduced upon increasing the bulkiness of the
silyl group.
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